تحلیل واریانس ANOVA و کاربردهای آن

1402/06/14

دسترسی سریع


برای مقایسه میانگین اثرات یک یا چند متغیر مستقل بر روی یک متغیر وابسته براساس طرح های آزمایشی مختلف، روش های آماری متعددی مانند آزمون t و آزمون تحلیل واریانس تک متغیری ANOVAبکار گرفته می شود.اما در حالتی که بیش از یک متغیر وابسته مدنظر قرار دارد، با توجه به وابستگی بین متغیرهای وابسته از روش های تحلیل چند متغیره استفاده می شود.
در طرح تحلیل واریانس چند متغیری دو یا چند متغیر وابسته پیوسته با یک یا چند متغیر مستقل مقوله ای ارزیابی می شوند. برای مثال مطالعه اثرات جنسیت(مرد، زن) روی رضایت شغلی کارگران و غیبت آنان از کار و یا بررسی اثرات نوع تدبیر درمانی (رفتاری-شناختی، روان کاوی، درمان فشرده) روی ارزیابی کارکرد کلی(پیامد بالینی) و رضایت مراجع از خدمات درمانی، از این قبیل می باشد. فرضیه صفر برای این آزمون در حالت کلی به صورت زیر است :H_0: μ_1=μ_2=⋯=μ_i
این فرضیه بیان می کند که میانگین همه گروه ها در جامعه برابر می باشد.  در روش MANOVA ماتریس حاصلضرب برداری کل(T) به دو گروه ماتریس حاصلضرب برداری بین گروه ها (B) و ماتریس حاصلضرب برداری درون گروه ها(W) تفکیک می شود.T=B+W  Tمیزان انحراف نمونه ها از میانگین را در هر سطح متغیر مستقل یا گروه از میانگین کل هر متغیر وابسته را نشان می دهد.ماتریس B اثرات متفاوت تدابیرآزمایشی را روی مجموعه متغیرهای وابسته نشان می دهد.در نهایت Wنشان می دهد که نمونه ها در هر سطح یا گروه متغیر مستقل چگونه از میانگین های متغیرهای وابسته منحرف می شوند. چهار آزمون آماری متعارف در این زمینه وجود دارد : اثر پیلایی، لامبدای ویلکز، اثر هتلینگ و روش بزرگترین ریشه دوم. پرکاربردترین این آماره ها لامبدای ویلکز می باشد که براساس نسبت Wبر B+Wساخته می شود.در عمل اگر اثرمتغیر مستقل بر متغیرهای وابسته از نظر آماری معنادار باشد، یعنی اگر تدابیرآزمایشی اثرگذار باشند، در اینصورت مقدار B نسبتا بزرگ و Wکوچک خواهد بود.
دلایل استفاده از MONOVA
اغلب اتفاق می افتد زمانی که هدف محقق بررسی بیش از یک متغیر وابسته است، به جای استفاده از روش های چند متغیری هر بار یکی از متغیرهای وابسته را در نظر گرفته و از روش ANOVA برای تحلیل استفاده می نماید. استفاده از این روش می تواند اشکالاتی را به وجود آورد که در ادامه به بیان آن ها می پردازیم : 1- آزمون های آماری تک متغیری به طور معمول همبستگی متقابل متغیرهای وابسته را نادیده می گیرد. در حالیکه روش MANOVAهمبستگی متقابل بین متغیرهای وابسته را با بررسی ماتریس های واریانس کواریانس در نظر می گیرد.  2- روش MANOVA محققان را قادر می سازد تا روابط بین متغیرهای وابسته را در هر سطحی از متغیرهای مستقل بررسی کنند. 3- این روش به شناسایی متغیرهای وابسته با بیشترین توان تفکیک در گروه بندیکمک می کند. 4- MANOVAبه واسطه توان افزایش یافته در موقعیت چند متغیری می تواند تفاوت های گروهی نامشخص تحت شرایط تحلیل های آماری تک متغیری را آشکار نماید. 5- روش MANOVA سطح آلفای کلی یا میزان خطای نوع اول (یعنی احتمال این که فرض صفر درست بوده و به اشتباه رد شود)را کنترل می کند. برای مثال اگر بخواهیم تفاوت های جنسیتی(متغیر مستقل) را با چهار متغیر وابسته رضایت شغلی (پرداخت، مزایا، همکاران و محل کار) بررسی کنیم و برای این کار از چهار آزمون جداگانه t و یا روش ANOVAاستفاده نماییم، با سطح خطای 5% برای هر آزمون با خطای نوع اول برابر 0.054 مواجه خواهیم شد. در این حالت استفاده از روش MANOVA این مشکل را برطرف می کند.
چه موقع نباید از MANOVA استفاده کرد
حداقل دو حالت وجود دارد که تحت آن شرایط نباید از MANOVA استفاده نمود و یا اینکه در کاربرد آن ها باید جانب احتیاط رعایت شود :  1- اگر همبستگی بین متغیرهای وابسته وجود نداشته باشد. موقعیت ایده آل برای استفاده از تحلیل واریانس چند متغیری زمانی است که متغیرهای وابسته دارای همبستگی متوسط باشند.  2- در شرایطی که متغیرهای وابسته دارای همبستگی بسیار بالایی هستند نیز نباید از MANOVA استفاده شود. از نظر آماری اینگونه همبستگی ها خطر هم خطی چندگانه را افزایش می دهد. از لحاظ مفهومی متغیرهایی که دارای همبستگی بالایی هستند، ممکن است سازه ی یکسانی را اندازه گیری کنند و بنابراین در مطالعه به عنوان متغیرهای زائد تلقی شوند.
مفروضه ها و محدودیت های آماری در تحلیل واریانس چند متغیری
نرمال بودن چند متغیری : یکی از شرایط استفاده از تحلیل واریانس چند متغیری نرمال بودن چند متغیری متغیرهای وابسته می باشد.در صورت عدم برقراری این فرض از روش های مختلف تبدیل داده ها مختلف استفاده می شود. استقلال : کننده گان در تحقیق باید مستقل از یکدیگر باشند، به لحاظ آزمایشی می توان گفت اگر شرکت کنندگان به صورت تصادفی انتخاب شوند، فرض استقلال برقرار می شود. مقادیر پرت و گمشده : روش تحلیل واریانس چند متغیری به مقادیر پرت یا کرانه های متغیرهای وابسته بسیار حساس است. خارج نکردن مقادیر پرت از تحلیل و یا تبدیل نکردن این داده ها می تواند میزان خطای نوع اول و دوم را افزایش دهد.  همگنی ماتریس های واریانس-کواریانس : روش استاندارد برای ارزیابی برابری ماتریس های کواریانس آزمونت Mباکس است، که در آن معناداری آماری شاخص ناهمگنی یا نابرابری محسوب می شود. از جمله روش های اصلاح نقض این مفروضه ها تبدیل متغیرهای وابسته است.  خطی بودن : فرض بر آن است که بین جفت متغیرهای وابسته روابط خطی برقرار است. در صورت مشاهده روابط غیرخطی می توان از تبدیل های مناسب استفاده نمود.

نظرات

هیچ نظری وجود ندارد.


افزودن نظر

مشاهده نقشه سایت
Copyright © 2017 - 2023 Khavarzadeh®. All rights reserved