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Abstract We introduce a two-step method to perform

spatio-temporal balanced sampling in a design-based

approach. For populations with spatio-temporal trends and

with anisotropic effects in the variable of interest, the

prediction can be further improved by selecting samples

that are well spread over the entire population in space and

time. We control the spread of the sample over the popu-

lation by using the volume of the corresponding three-di-

mensional Voronoi tessellation. Indeed, spatio-temporal

design-based balanced sampling is even more efficient

under the presence of a trend and anisotropic effects. We

present an intensive simulation study comparing our

method to other available methods for spatio-temporal

sampling. Finally, we analyze real data by sampling from a

population of temperature stations over six European

countries.

Keywords Balanced sampling � Design-based sampling �
Spatio-temporal sampling

1 Introduction

In data analysis, each one of the individuals in a large

population of interest cannot generally be surveyed.

Instead, we usually sample a subset of individuals, and use

these observations to draw conclusions about the whole

population. Ideally, the sample resembles the characteris-

tics of the target population, and thus the conclusions

obtained from the sample are likely applicable to the whole

population. Sampling is concerned with choosing a group

of individuals from an entire population to estimate par-

ticular characteristics of such a population. Examples of

such characteristics could be the mean parameter of a

random field (Haining 2003; Christakos 2005), the location

of targets (Rogerson et al. 2004), or values at unsampled

sites (Goovaerts 1997). In a classical survey sampling the

population is usually finite, and some auxiliary information

is assumed to be known about the whole population. Let U

indicate the population of N units, and the indicator Ii
represents whether the unit i is selected or not. Note that we

use the usual terminology in sampling designs, where the

individuals of a population are called units. We have Ii = 1

if unit i is included in the sample, and Ii = 0 otherwise.

Each unit i has a positive inclusion probability 0\pi\1:

The first-order inclusion probability, pi ¼ EðIiÞ ¼
PðIi ¼ 1Þ, is the probability that the unit i is selected. The

second-order inclusion probability, pij ¼ EðIiIjÞ ¼
PðIi ¼ 1; Ij ¼ 1Þ, is the probability that both units i and j

are selected. When the sample size is equal to n and it is

fixed, the inclusion probabilities should satisfy

n ¼
XN

i¼1

pi: ð1Þ

Note that, for example, in simple random sampling

(SRS) with replacement, the inclusion probability for each

unit in each selection is 1
N
; so for a sample with size n, the

inclusion probability is n
N
; and we then have

PN
i¼1 pi ¼ n

N
þ � � � þ n

N
¼ n. Suppose Sn is the set of all

possible samples of size n drawn from the population U.

Then Sn is a sampling design along with a function
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pð�Þ[ 0; where p(s) denotes the selection probability of a

sample s 2 Sn. Let yi denote the value of the target variable

for the population unit i, then for a sample s 2 Sn, the total

quantity

Yi ¼
XN

i¼1

yi; ð2Þ

can be estimated using the unbiased Horvitz–Thompson

estimator (Horvitz and Thompson 1952), as follows

ŶHT ¼
XN

i¼1

yi

pi
Ii: ð3Þ

Let X1; . . .;XJ be a set of auxiliary variables, so that

their values xk1; . . .; xkJ for the kth unit (kth individual of

the population) are known. According to the definition

given in Tillé (2006), a balanced sampling design is

defined as follows
X

k2s

xkj

pk
�

X

k2U
xkj; j ¼ 1; . . .; J ð4Þ

Balanced sampling can be used in stratified sampling

and in sampling with a fixed sample size. Indeed, a strat-

ified design is balanced on the indicator variables of the

strata, because the Horvitz–Thompson estimators of the

sizes of the strata are proportional to the population sizes of

such strata. In design-based inference, balanced sampling

allows for a large improvement in the efficiency of the

Horvitz–Thompson estimator when the auxiliary variables

are correlated with the variable of interest (Deville and

Tillé 2004). In model-based inference, the selection of

balanced samples has often been considered to protect

against misspecification of the model (Valliant et al. 2000).

This article presents a new method for sampling from a

spatio-temporal population. Many populations under study

are in fact distributed over space and time, but a wide

number of sampling designs, such as SRS, do not accom-

modate the spatial and/or temporal aspects into the design.

If nearby units (or locations in space and/or time) behave

more similarly than units further apart, which is a very

common feature, then it is useful to make sure that the

sample is well spread over the population. A well-spread

sample in space and time is said to be spatio-temporally

balanced (Grafström and Tillé 2013). It is well established

that spatio-temporally balanced sampling is efficient, and

that is why difficult types of systematic designs are com-

monly used. With a systematic design it is a trouble to use

unequal inclusion probabilities. In one dimension it is

possible to use systematic sampling with unequal proba-

bilities, also known as systematic pps sampling, to make

sure that the sample is well spread over the population.

Stevens and Olsen (2004) generalized this concept to two

dimensions by introducing the generalized random-

tessellation stratified (GRTS) method. The GRTS method

uses a specific random mapping to map the two-dimen-

sional locations into one dimension, while preserving some

spatial order. Units close in the two-dimensional space tend

to be close in the one-dimensional space after the mapping.

The sample is then selected in one dimension using sys-

tematic pps sampling. This procedure assures that a sample

that is well spread over the population is selected. Another

sampling method that maps two dimensions into one, by

using space-filling curves, is provided and assessed by

Lister and Scott (2009). It is also a common approach to

perform spatial stratification. This is often not straightfor-

ward and can be done in many different ways. To achieve a

well-spread sample, it is required that the strata are quite

small. When the units have unequal inclusion probabilities

it is more difficult to split the population into smaller strata.

To select a fixed number of units within each stratum, the

inclusion probabilities within each stratum must sum to an

integer. More simplicity is achieved if it is possible to

avoid a spatial stratification. In this article, we define a new

method based on balanced sampling by using the cube

method to choose representative sampling from a spatio-

temporal population. We use the spatial coordinates (x,

y) and the temporal instants as balanced variables. This

approach selects a sample that is well-spread over the

population in space and time. Most of the spatial applica-

tions naturally concern populations spread in one, two, or

three dimensions. For populations with auxiliary variables

available (thus variables that provide useful information

related to the problem at hand), the sample can be balanced

in the auxiliary space or auxiliary time, which might con-

sist of more than three dimensions.

The paper is structured as follows. In Sect. 2, we briefly

discuss the history of spatial and spatio-temporal sampling.

In Sect. 3, we provide short descriptions of the balanced

sampling strategy and the cube method, and present our

method that makes use of the cube method for spatio-

temporal data. Spatio-temporal universal kriging is pre-

sented and discussed in Sect. 4, together with some accu-

racy measures. A simulation study and a real data example

are presented in Sect. 5. Concluding remarks are given in

Sect. 6.

2 Spatial sampling: a historical follow-up

Sampling is the process of selecting units from a target

population so that the sample allows unknown quantities of

the population to be estimated. Intuitive applications of the

principles of sampling in science have taken place for a

long time from very early human history in Egypt, China

and other places throughout the world. The first known
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attempt to make statements about a population using

information from only a part of it was by the English

merchant John Graunt (1620–1674). His famous tract

describes a method for estimating the population of Lon-

don on the basis of partial information. Since then, the

sampling theory has developed separately from the main-

stream of classical statistics (Neyman 1934) and has

evolved into an extensive body of theory, methods, and

operations that are used on a daily basis all over the world.

‘‘Sampling Techniques’’, a landmark book by Cochran

(1977), is widely used in modern sampling practices. To

deal with two-dimensional spatial sampling, the regional-

ized variable theory, often referred to as geostatistics, was

well built and is widely applied in geosciences (Matheron

1971). This approach uses spatial autocorrelation to

improve the sampling efficiency in terms of the estimator

error variance in relation to the sample design and the

sample size (Stein and Ettema 2003; Christakos 2005).

Spatial stratified heterogeneity was considered to achieve

more efficient spatial sampling and inference (Goovaerts

1997; Li et al. 2008; Wang et al. 2010).

The importance of (optimal) spatial sampling design for

environmental applications and soil science has been

shown in several papers and monographs (Cox 1999; van

Groenigen et al. 1999; Brus and Heuvelink 2007; Dobbie

et al. 2008; Delmelle and Goovaerts 2009). Published

papers on spatial sampling design may be divided into

several categories, although some of which are overlap-

ping. We may differentiate between design criteria for

spatial prediction and estimation of the covariance func-

tion, and criteria combining both objectives. Contributions

falling into the category of criteria for prediction are pro-

vided by Müller (2005) and Brus and Heuvelink (2007).

Criteria for the estimation of the covariance function are

considered by Zimmerman and Homer (1991) and Müller

and Zimmerman (1999). Combined criteria can be found in

Zhu and Stein (2006), who considered the minimization of

the average expected length of predictive intervals. Other

papers falling into this category of combined criteria are

Bayesian approaches specifying prior distributions over

covariance functions such as those by Brown et al. (1994),

Müller et al. (2004) and Fuentes et al. (2007). Indeed,

Brown et al. (1994) and Fuentes et al. (2007) considered

the covariance function to be nonstationary and deal with

an entropy-based design criterion according to which the

determinant of the covariance matrix between locations to

be added to the design must be maximized. Both of them

make use of simulated annealing algorithms to find optimal

designs satisfying their criteria.

On the more computational side, we can distinguish

between stochastic search algorithms such as simulated

annealing (Aarts and Korst 1989), or evolutionary genetic

algorithms, and deterministic algorithms for optimizing the

investigated design criteria. With the exception of Müller

(2005), and Spöck and Pilz (2010), almost all algorithms

for spatial sampling design optimization use stochastic

search algorithms to find optimal configurations of sam-

pling locations x1; . . .; xn: The term ‘‘spatial-simulated

annealing’’ (SSA) finds its first appearance in the work of

van Groenigen et al. (1999). Trujillo-Ventura and Ellis

(1991) consider multi-objective sampling design

optimization.

The local pivotal method (LPM) is another method that

was introduced by Grafström et al. (2012). In this method,

selecting spatially balanced samples with prescribed

inclusion probabilities from a finite (large) population uses

a sub-optimal implementation of the LPM. The local cube

method (or doubly balanced sampling) selects doubly

balanced samples with prescribed inclusion probabilities

from a finite population. This method was introduced by

Grafström and Tillé (2013). We note that none of these

methods appeared in the literature considered balanced

sampling in a spatio-temporal setting.

3 Balanced sampling for a spatio-temporal
population

Balanced sampling can be used with two different infer-

ential approaches, model-based (Royall and Herson 1973;

Valliant et al. 2000) and design-based perspectives (Deville

and Tillé 2004). In the model-based approach, inference is

made on a statistical super population model and it may be

performed by probability or non-probability samples. In

this case a sample is balanced when the sample means of a

set of auxiliary variables are equal to the known population

means (Valliant et al. 2000). These auxiliary variables

usually provide useful information related directly to the

problem at hand, and they are often measured at particular

latitude and longitude geographical coordinates along with

time. The design-based method needs a sampling frame

and uses a probability sample. In this case a sample is

balanced when the Horvitz-Thompson sample estimates for

the auxiliary variables are equal to their known population

counterparts. The selection of a balanced sample generally

improves the efficiency of the sampling estimates (Cochran

1977). There are several methods to select a balanced

sample with a fixed sample size. The cube algorithm is the

method for selecting balanced sampling with unequal

inclusion probabilities (Deville and Tillé 2004).

Spatially-balanced sampling combines elements of

simple random and systematic sampling. Locations are

selected randomly, but are guaranteed to be spread over

space in an attempt to maximize the spatial dependence

among sample locations. Yates (1949) showed that a
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sample of a response Y was balanced over an auxiliary

variable Z, that is correlated with Y, if the values of

Z (which are known in advance) are chosen so that the

sample mean of the Z values is exactly equal to the true

population mean of Z. Royall and Herson (1973) required

the strict condition that the first several sample moments of

Z exactly match the corresponding population moments.

The intuition behind balancing is that by forcing the

Z sample moments to match the population moments, we

should get approximate balance over Y, and therefore a

more precise sample. Royall and Herson (1973) showed

that a balanced sample is optimal in some cases. They

noted that an option between strict balancing and SRS is to

partition the range of Z into quantiles, then pick one point

in each quantile, and observe the corresponding Y. While

such a sample will not be strictly balanced, it guarantees a

good estimate of the distribution function of Z for every

sample draw. Because of the correlation between Y and Z,

one should also get a good estimate for Y.

Let the ancillary variable be located at a spatial site

s ¼ ðx; yÞ 2 R2 and time location t 2 R in a spatio-tem-

poral subregion D � R2 � R. Then we define a sample to

be spatio-temporally balanced if the spatial moments of the

sample locations match the spatial moments of the popu-

lation, and the temporal moments of the sample locations

match the temporal moments of the population. The first

two spatial moments are the center of gravity and the

inertia. The center of gravity for a region D is given by the

ordered triplet (lx, ly, lt), where lx is the central moment

about the spatial y-axis and temporal t-axis given by

lx ¼
Z1

�1

x#yðxÞstðxÞdx; ð5Þ

where #yðxÞ and stðxÞ are the extended cross-sections of D

at the points y and t, respectively, given by

#yðxÞ ¼
Z1

�1

IDx
ðyÞdy; ð6Þ

stðxÞ ¼
Z1

�1

IDx
ðtÞdt; ð7Þ

where Dx ¼ fðx; :; :Þ 2 Dg and IDx
ðzÞ is an indicator func-

tion that is equal to 1 when z belongs to the domain Dx and

it is 0 otherwise. Similarly, ly and lt can be derived in the

same way. In particular,

lt ¼
Z1

�1

tdxðtÞ#yðtÞdt

with

#yðtÞ ¼
Z1

�1

IDt
ðyÞdy

and

dxðtÞ ¼
Z1

�1

IDt
ðxÞdx:

The second spatial moment is analogous to the covari-

ance matrix, and measures the regularity of the shape of D,

or of the point pattern formed by the sample points.

Designs with some degree of spatio-temporal regularity or

balance tend to be more efficient (i.e. yield responses that

are less variable) for sampling natural resources than

designs with no spatio-temporal structure. Spatio-temporal

balance also ensures that there is minimal effect of spatial–

temporal correlation on parameter estimates.

In this paper, we propose a two-step sampling method to

obtain a spatio-temporally balanced sample from a target

population. In the first step a stratified design that is bal-

anced on the spatio-temporal variable of the strata is used.

Indeed, a local cube method chooses the stratifications as

samples that satisfy the balanced equations. In the second

step a member of each stratification is chosen so that it has

a maximum distance to the center of each stratified

neighborhood in the three dimensions. So, we choose three

near stratifications for each one, the first one from the

spatial x-axis, the second one from the spatial y-axis, and

the third one from the temporal axis. Note that for all three

strata, the nearest stratum is considered as a neighbor

stratum, and thus, for each selected stratum, a member of

the stratum is selected having a maximum distance from all

three nearest strata.

As an illustrative simple, one-dimensional example, the

top plot of Fig. 1 shows such a stratification, with samples

chosen as in the bottom plot.

Fig. 1 Illustration of a two-step spatio-temporal design-based bal-

anced sampling
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4 Measuring the accuracy of the optimal sampling
design

To measure the accuracy of the resulting sampling strategy,

we used spatio-temporal kriging and accuracy measures to

test the prediction coming from the selected sample.

4.1 Spatio-temporal kriging

Kriging is a generalized least-square regression technique

that allows one to account for the spatio-temporal depen-

dence between observations, as revealed by the covari-

ogram, to perform spatio-temporal prediction.

Assume that the values of a random field Zð:; :Þ have

been observed on a set of nm spatio-temporal locations

fðs1; t1Þ; . . .; ðsn; tmÞg, and that Zðs; tÞ is a second-order

stationary spatio-temporal random field, with a constant

unknown mean lðs; tÞ ¼ l, and a known covariance

function Cðh; uÞ. Let C ¼ ðC(s0 � s1; t0 � t1Þ; . . .;Cðs0 �
sn; t0 � tmÞÞ and Rnm�nm ¼ ðCðsi � sj; ti � tjÞÞ, then the

prediction of the random field at a new spatio-temporal site

ðs0; t0Þ is given by the linear form

Z�ðs0; t0Þ ¼
Xn

i¼1

Xm

j¼1

kijZðsi; tjÞ; ð8Þ

where k0 ¼ ðk11; . . .; knmÞ ¼ Cþ 1
ð1�10R�1CÞ

10R�11

� �0
R�1, 1 is a

vector of nm ones, and prime stands for the transpose of a

vector (see Mateu and Müller 2013; Cressie and Wikle

2011).

4.2 Accuracy measures

To measure the accuracy of the resulting sampling strategy,

we test the prediction coming from the selected sample by

using ordinary kriging via the root-mean-squared error

(RMSE) defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

PS
s¼1 ŷst � ystð Þ2

ST

s

; ð9Þ

where the yst and ŷst are the true and predicted values at the

sth location on the tth temporal instant, respectively. The

smaller the RMSE, the more accurate the kriging predic-

tion is. In terms of comparison under different setups and

scenarios (as happens in the simulation study), we use a

normalized root-mean-squared error (NRMSE), which is

given by

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

PS
s¼1 ŷst � ystð Þ2

PT
t¼1

PS
s¼1ðystÞ

2

s

: ð10Þ

As an alternative measure that evaluates the spread of

the sample over space and time, we use the variance of the

volume of the Voronoi tessellation. A Voronoi diagram is a

partition of a plane into regions based on distances to

points in a specific subset of the plane. That set of points

(called seeds, sites, or generators) is specified beforehand,

and for each seed there is a corresponding region consisting

of all points closer to that seed than to any other. These

regions are called Voronoi cells. The Voronoi diagram of a

set of points is dual to its Delaunay triangulation. It is a

diagram drawn by taking pairs of points that are close

together and drawing a line that is equidistant between

them and perpendicular to the line connecting them. That

is, all points on the lines in the diagram are equidistant to

the nearest two (or more) source points.

A 3d-Voronoi subdivision is not that hard to imagine.

Consider two lonely points in a cube. A good way of

dividing the cube is splitting it with the bisector plane. This

plane is perpendicular to the line connecting the two points

and it is placed exactly halfway between them (Fig. 2, left).

There is no need to limit ourselves to two points. Once we

can split the cube by a plane, we can repeat this as often as

we like. Figure 2 (middle) shows and example with three

points, and Fig. 2 (right) an example with ten points (Du

and Wang 2005).

The volume of each Voronoi tessellation is approxi-

mated by using a Monte Carlo method, in which we gen-

erate a large number of random points in a cube. Smaller

values of RMSE, of NRMSE, and of the variance of the

volume of the Voronoi tessellation indicate a better per-

formance of the sampling method in the spatio-temporal

context.

5 Simulation study and real data analysis

We considered a variety of scenarios to show the perfor-

mance of our proposed design-based balanced sampling in

comparison with other sampling strategies. In the second

part we considered recorded average daily temperatures at

617 stations across six European countries taken every day

for a 1-year period.

5.1 Simulation study

We considered two cases for the population size

(N = 4,000,000, N = 125,000) living in the rectangular

space–time regions [0, 200] 9 [0, 200] 9 [0, 100] and [0,

50] 9 [0, 50] 9 [0, 50], respectively. We also considered

isotropic and anisotropic cases in combination with

homogenous (no present trend) and inhomogeneous (with a

particular polynomial trend) cases. Finally, we chose a
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number of spatial and temporal covariance models giving

rise to several separable spatio-temporal covariance mod-

els. A non-separable covariance model was also consid-

ered. The whole set of combined scenarios is shown in

Table 1.

For completeness, we briefly comment on the covari-

ance models used [further insight can be found in Chris-

takos (2005)]. The stationary, isotropic exponential

covariance model is a function that only depends on the

spatial distance r C 0 between any two points, and is given

by

CðrÞ ¼ expð�rÞ: ð11Þ

The Matérn isotropic correlation function is defined by

Handcock and Stein (1993) as follows

KhðrÞ ¼
1

2h2�1C h2ð Þ
r

h01

� �h2

Kh2
r

h01

� �
; ð12Þ

where r is the separation lag, h01 ¼ h1=ð2
ffiffiffiffiffi
h2

p
Þ, Kh2 is a

modified Bessel function of the second kind of order h2, C
is the gamma function, h1 [ 0 is a scale parameter con-

trolling the range of correlation, and h2 [ 0 is the

smoothness parameter controlling the smoothness of the

random field. The spatial isotropic covariance function is

then, for r� 0,

CðrÞ ¼ r2KhðrÞ; ð13Þ

where r2 stands for the overall variance.

As temporal covariance functions we use the Cauchy

model (Gneiting and Schlather 2004)

CðtÞ ¼ r2 1þ ðhtÞ/
� ��v

; ð14Þ

where t[ 0; / 2 ð0; 2	; v[ 0; h[ 0; and the

stable model with a covariance function of the form

CðtÞ ¼ exp �tað Þ; ð15Þ

with a 2 ð0; 2	.
We finally consider the non-separable spatio-temporal

covariance function of the Gneiting class (Gneiting 2001)

given by

Cðr; tÞ ¼ r2

w t2ð Þd=2
f

r2

w t2ð Þ

� �
; ð16Þ

where f(x) is a completely monotone function on [0, 1Þ, d
denotes the dimension of the random field (the models can

be used for any dimension), w(x) is positive with a

Fig. 2 Voronoi tessellation in a

three-dimensional space

Table 1 Trend and covariance

models for different scenarios
Scenario Isotropy Trend Spatial cov. Temporal cov. Non-separable cov.

1 Yes – Exponential Cauchy

2 Yes – Matérn Stable

3 Yes – Gneiting

4 Yes 1 ? x - y ? t Exponential Cauchy

5 Yes 1 ? x - y ? t Matérn Stable

6 Yes 1 ? x - y ? t Gneiting

7 No – Exponential Cauchy

8 No – Matérn Stable

9 No – Gneiting

10 No 1 ? x - y ? t Exponential Cauchy

11 No 1 ? x - y ? t Matérn Stable

12 No 1 ? x - y ? t Gneiting

The names of the covariance functions are referred to in the text
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completely monotone derivative on [0, 1Þ, and r2 [ 0 is

the variance.

For the anisotropic cases, we used a 3 9 3 matrix

cosðaÞcosðLÞ sinðaÞcosðLÞ sinðLÞ
�sinðaÞ cosðaÞ 0

�cosðaÞsinðLÞ �sinðaÞsinðLÞ cosðLÞ

2
4

3
5

where a stands for the angle in space, and L for the angle in

time. In particular, we fixed a = p/4 and L = p/8.
For the case of the population with size N = 4,000,000,

we simulated a random field of this size using the corre-

sponding covariance structure within the spatial–temporal

cube [0, 200] 9 [0, 200] 9 [0, 100], and proceeded as

follows: (a) we first divided the total volume into 32,000

parts of small cubes of 5 9 5 9 5 points; (b) we then

selected a sample using the cube method from these 32,000

blocks; (c) for each selected block we chose a member that

had the greatest distance to selected centers of other blocks.

Out of the N = 4,000,000, we selected four sample

sizes, n = 500, 1000, 2000 and 4000, and used the sampled

data to predict the observation at the locations of the rest of

the population to obtain a value of NRMSE.

For sampling purposes, variables such as longitude,

latitude and time have been used as ancillary variables, and

the sampling has been conducted in a manner that the

sampling result is balanced within these considered

variables.

This procedure was repeated 100 times, and we aver-

aged the NRMSE values. For each simulation, we also

calculated the variance of the volume of the Voronoi tes-

sellation, providing an average out of the 100 simulations.

Figure 3 shows the average value of the variance of the

volume of the Voronoi tessellation for each sample size

and for each of the four compared methods. Our method

(named as STBS, spatio-temporal design-based balanced

sampling) clearly provides a much larger reduction in the

variance of the volume, indicating a better spread of the

sample over the space and time domains, in addition to a

better performance in the sampling strategy.

A similar procedure was followed in the case

N = 125,000, for which we selected sample sizes of

n = 100, 200, 400 and 800. Tables 2 and 3 show the

averaged NRMSE values for the whole set of considered

scenarios for the two cases of the population size. We

clearly note that NRMSE decreases with the sample size,

and in all cases, our method STBS provides the lowest

values of NRMSE. In general, the largest values of

NRMSE are obtained under anisotropic, and non-stationary

cases. Comparing isotropic versus anisotropic cases (the

first six vs the second six scenarios), we note that when

using the SRS method SRS and the STBS there were not

significant differences in terms of NRMSE values. How-

ever, values of NRMSE were larger under anisotropic cases

when considering the GRTS method and the local cube

method (Lcube). In terms of non-stationary cases with the

presence of a trend, GRTS and Lcube methods are sensitive

to such trend providing larger values of NRMSE. However,

the performance of prediction under the STBS method is

not affected by a trend as this method provides similar

values of NRMSE for any of these cases. Indeed, spatio-

temporal design-based balanced sampling is even more

efficient under the presence of a trend and anisotropic

effects. The effect of separability in the covariance struc-

ture of the spatio-temporal data does not seem to affect the

performance of each method. We also highlight the fol-

lowing fact. We considered two population sizes

N = 4,000,000 and N = 125,000. The largest sample size

in the former case was n = 4000, while it was n = 800 in

the latter. Thus the corresponding ratios of the largest

sample size to the population size were 0.001 and 0.0064,

six times largest in the N = 125,000 case. This notably

results in a reduction of that magnitude of the averaged

NRMSE in Table 3 compared to those values in Table 2.

5.2 Real data analysis

We considered recorded average daily temperatures at

617 stations across six European countries (France,

Germany, Belgium, Luxembourg, the Netherlands and

Switzerland) taken every day for a 1-year period (Jan-

uary, 2014–January, 2015). See the locations of the

stations in Fig. 4. This data set is available on the web

site ‘‘wunderground.com’’. The color of the stations

indicates variances of the temperature over the studied

period.
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Fig. 3 Averages (over 100 simulations) of the variances of the

Voronoi tessellation volume for each sample size and for each of the

four compared sampling methods (i.e. SRS the simple random

sampling, GRTS the generalized random-tessellation stratified, Lcube

the local cube method; and STBS the spatio-temporal balanced

sampling)
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We fitted three covariance models: (a) a separable

model ‘‘Exponential–Cauchy’’, (b) a separable ‘‘Matérn–

Stable’’ model, and (c) a non-separable Gneiting model.

We used a marginal likelihood procedure to estimate the

parameters, with a 7-day temporal lag, and a 100 km

spatial lag. The non-separable Gneiting model provided the

best results in terms of prediction. Figure 5 shows the 3d

spatio-temporal fitted Gneiting covariogram, and the

Table 2 Averaged NRMSE for the different scenarios considered and N = 4,000,000

n Model Scenario

1 2 3 4 5 6 7 8 9 10 11 12

500 SRS 0.564 0.567 0.550 0.570 0.561 0.553 0.573 0.568 0.585 0.563 0.569 0.558

GRTS 0.312 0.325 0.322 0.314 0.323 0.328 0.320 0.325 0.556 0.331 0.313 0.324

Lcube 0.287 0.303 0.291 0.279 0.293 0.293 0.294 0.296 0.316 0.301 0.302 0.291

STBS 0.267 0.267 0.281 0.263 0.269 0.269 0.288 0.285 0.290 0.271 0.295 0.272

1000 SRS 0.305 0.315 0.305 0.308 0.302 0.294 0.306 0.311 0.228 0.293 0.295 0.303

GRTS 0.234 0.246 0.236 0.234 0.242 0.246 0.243 0.242 0.310 0.250 0.248 0.242

Lcube 0.231 0.227 0.232 0.235 0.237 0.241 0.234 0.235 0.242 0.232 0.238 0.240

STBS 0.222 0.233 0.218 0.224 0.238 0.244 0.234 0.228 0.232 0.241 0.235 0.242

2000 SRS 0.265 0.272 0.266 0.261 0.268 0.262 0.272 0.269 0.204 0.273 0.271 0.266

GRTS 0.211 0.211 0.207 0.203 0.212 0.214 0.217 0.216 0.264 0.211 0.218 0.216

Lcube 0.218 0.215 0.218 0.217 0.219 0.219 0.219 0.218 0.217 0.219 0.224 0.225

STBS 0.197 0.198 0.196 0.194 0.213 0.212 0.201 0.204 0.222 0.210 0.198 0.200

4000 SRS 0.215 0.213 0.212 0.218 0.214 0.214 0.213 0.212 0.155 0.215 0.212 0.216

GRTS 0.164 0.165 0.160 0.165 0.165 0.166 0.167 0.167 0.213 0.169 0.169 0.170

Lcube 0.161 0.163 0.157 0.157 0.161 0.164 0.162 0.164 0.167 0.163 0.164 0.165

STBS 0.154 0.151 0.151 0.157 0.156 0.155 0.161 0.155 0.164 0.155 0.156 0.161

Table 3 Averaged NRMSE for the different scenarios considered and N = 125,000

n Model Scenario

1 2 3 4 5 6 7 8 9 10 11 12

100 SRS 0.092 0.095 0.093 0.092 0.096 0.092 0.094 0.096 0.092 0.095 0.094 0.092

GRTS 0.051 0.053 0.055 0.056 0.053 0.054 0.055 0.054 0.053 0.053 0.050 0.051

Lcube 0.048 0.050 0.049 0.050 0.050 0.049 0.050 0.049 0.049 0.046 0.047 0.048

STBS 0.042 0.045 0.045 0.048 0.048 0.047 0.049 0.048 0.046 0.044 0.043 0.042

200 SRS 0.049 0.051 0.052 0.049 0.051 0.050 0.052 0.052 0.052 0.053 0.052 0.049

GRTS 0.040 0.041 0.041 0.040 0.039 0.039 0.039 0.041 0.040 0.038 0.039 0.040

Lcube 0.037 0.039 0.039 0.040 0.039 0.039 0.040 0.040 0.040 0.039 0.037 0.037

STBS 0.036 0.040 0.040 0.041 0.038 0.040 0.039 0.038 0.041 0.039 0.036 0.036

400 SRS 0.044 0.045 0.045 0.043 0.045 0.045 0.043 0.044 0.045 0.044 0.046 0.044

GRTS 0.035 0.037 0.037 0.036 0.036 0.036 0.037 0.035 0.036 0.034 0.035 0.035

Lcube 0.036 0.038 0.037 0.038 0.037 0.037 0.037 0.037 0.038 0.036 0.036 0.036

STBS 0.033 0.033 0.033 0.034 0.033 0.034 0.034 0.033 0.033 0.033 0.033 0.033

800 SRS 0.036 0.036 0.037 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036

GRTS 0.028 0.028 0.028 0.028 0.028 0.028 0.027 0.027 0.028 0.027 0.028 0.028

Lcube 0.027 0.028 0.028 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.028 0.027

STBS 0.026 0.026 0.027 0.026 0.027 0.027 0.027 0.026 0.027 0.026 0.025 0.026
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corresponding fitted variogram. The empirical spatio-tem-

poral variogram is also shown.

Table 4 shows the fitted parameters of the spatio-tem-

poral covariance model based on days as the temporal unit,

and 10-2 km as the spatial one. We note that the separable

parameter takes the value Sep = 0.5763, indicating a

strong interaction between space and time.

Finally, we computed the NRMSE for several sample

sizes, and we used the same four sampling procedures as in

the simulation study. Note that we have 617 stations taking

temperature values during 365 days per year. So we have

225,205 points for sampling. Out of these, we selected

samples sizes of n = 500, 1000, 2000 and 4000. Using

these samples, we used the non-separable spatio-temporal

Gneiting model for kriging prediction. The results are

shown in Table 5 which shows comparisons among the

SRS, GRTS, Lcube, and our approach, the STBS method.

The NRMSE values indicate that the spatio-temporal bal-

anced sampling design has a better kriging performance for

the average temperatures in these six countries compared to

the other methods, confirming the outperformance of our

proposed method.

6 Conclusions and discussion

We have introduced a simple two-step method that per-

forms spatio-temporal balanced sampling in a design-based

approach. The presence of spatio-temporal trends and/or

anisotropic effects in the variable of interest makes our

method even more competitive with respect to other

existing methods. The spread of the sample over the pop-

ulation is controlled by using the volume of the corre-

sponding three-dimensional Voronoi tessellation, and the

spatio-temporal design-based balanced sampling strategy

provides the best spread. So, we have presented a sampling

strategy that outperforms any other adapted strategy for

spatio-temporal data.

We performed a simulation study comparing the per-

formance of our proposed method with other three sam-

pling methods. It is shown that our method (the STBS

method) outperformed its competitors in several fronts. It

provided the lowest spatio-temporal prediction root mean

square errors. But in addition, the STBS method provided

balanced samples on the auxiliary variables, and located

the samples homogeneously spread all over the region

Fig. 4 Locations of the weather

stations in six European

countries

Stoch Environ Res Risk Assess

123



preserving the spatio-temporal structure of the data. Note

that the SRS method provides samples that are not bal-

anced on the auxiliary variables.

Globally speaking, the SRS method usually reports the

largest NRMSE values. The reason can be that samples

may be selected near each other, and it may reduce the
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Fig. 5 Empirical spatio-temporal variogram (bottom-left panel) and the fitted non-separable Gneiting model (top and bottom-right panels). The

temporal units are days, and the spatial units are shown with the proportion of 1 unit = 100 km)

Table 4 Parameter estimates of

the spatio-temporal Gneiting

covariance model

Nugget Sill Temporal scale Spatial scale Power in time Power in space Sep

0.1275 0.3576 0.3850 0.7245 0.3187 0.6374 0.5763
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gained information from the sample. Therefore, it might be

a wrong method for spatio-temporal sampling. Among all

presented methods, GRTS is an appropriate method to

stratify various spatial and temporal parts. However, it is

not completely successful to place samples in the optimal

locations. Although the GRTS method reports lower

NRMSE values compared to the SRS method, it is not

better than the Lcube and STBS ones. Lcube method can

spread samples suitably all over the region and it causes a

reduction in NRMSE. An important issue is that the Lcube

method still makes a large error in the marginal spatial and

temporal dimensions, and it cannot locate samples in

optimal regions. Finally, the STBS method can reduce

NRMSE by applying balanced sampling and creates space

in final sample locations. The reason can be based on

sampling from spatial and temporal margins creating

enough space between samples.

We note here that there has been a growing literature in

the field of optimal spatial sampling designs for environ-

mental applications and soil sciences (Brus and Heuvelink

2007; Dobbie et al. 2008; Delmelle and Goovaerts 2009).

However these approaches have mainly focussed on the

spatial structure of the data. Some of these approaches are

more focussed on the computational side, providing

stochastic search algorithms, evolutionary genetic algo-

rithms, and deterministic ones for optimizing the investi-

gated design criteria. Again all published papers deal with

the spatial component. More recently, Grafström and Tillé

(2013) introduce the local cube method (or doubly bal-

anced sampling) which selects doubly balanced samples

with prescribed inclusion probabilities from a finite

population.

Our method is completely new as works for spatio-

temporal data, and represents a step forward into the

optimal design for spatio-temporal structures. We have

provided some comparisons with the other existing meth-

ods in space, and have shown that our proposal is clearly

competitive even only in the space against other existing

methods, with the additional gain of dealing also with

space–time data.

The STBS method depends on the inclusion probabili-

ties which can be clearly refined in terms of the potential

auxiliary variables. A further step not considered here

could be calculating these probabilities in terms of such

auxiliary variables. Another important point is that we are

proposing a method for selection of sample points in a

spatio-temporal context, but we give no answer to the

optimal sample size. This question still remains open.

Finally, we have assumed that the region of interest is a

subregion of the plane. A latent open question here is how

our method can be adapted to those situations where the

support of the spatio-temporal data is not a continuous

planar region but a network. Sampling in networks is again

an open area for research.
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Tillé Y (2006) Sampling algorithms. Spinger, New York

Trujillo-Ventura A, Ellis JH (1991) Multiobjective air pollution

monitoring network design. Atmos Environ 25:469–479

Valliant R, Dorfman AH, Royall RM (2000) Finite population

sampling and inference: a prediction approach. Wiley, New

York

van Groenigen JW, Siderius W, Stein A (1999) Constrained

optimisation of soil sampling for minimisation of the kriging

variance. Geoderma 87:239–259

Wang JF, Haining RP, Cao ZD (2010) Sample surveying to estimate

the mean of a heterogeneous surface: reducing the error variance

through zoning. Int J Geogr Inf Sci 24:523–543

Yates F (1949) Sampling methods for censuses and surveys. Griffin,

London

Zhu Z, Stein ML (2006) Spatial sampling design for prediction with

estimated parameters. J Agric Biol Environ Stat 11:24–49

Zimmerman DL, Homer KE (1991) A network design criterion for

estimating selected attributes of the semivariogram. Environ-

metrics 2:425–441

Stoch Environ Res Risk Assess

123


	A simple two-step method for spatio-temporal design-based balanced sampling
	Abstract
	Introduction
	Spatial sampling: a historical follow-up
	Balanced sampling for a spatio-temporal population
	Measuring the accuracy of the optimal sampling design
	Spatio-temporal kriging
	Accuracy measures

	Simulation study and real data analysis
	Simulation study
	Real data analysis

	Conclusions and discussion
	Acknowledgements
	References




